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ARTICLE INFO ABSTRACT

Keywords: In this study, we explore how the functional response framework can be implemented in pest management. Here,
Control managers take the role of predators foraging on pests and facing monetary costs for survey and control in a
Foraging spatial domain where the pest distribution and control strategy do not have to be random. To investigate this
Pest

framework quantitatively, we simulated various management processes on different pest spatial distributions
using a spatially-explicit individual-based model and Monte-Carlo simulations, and also confirmed some of the
results analytically. By graphing the number of pests controlled versus pest density, we obtained management
functional response curves. Whether the management functional response was shaped like a type I, type II or
type III functional response depended on the management costs and the search area. However, the management
spatial strategy and the pest spatial distribution had little effect on the functional response. We applied our
model to the management of mountain pine beetle epidemic in Cypress Hills, Saskatchewan, Canada, with
simulations matching the real number of attacked trees controlled by managers. We showed how to make an
analogy between functional responses in predator-prey interactions and in human-pest interactions and

Population dynamics
Predator—prey interactions

thereby, apply insights from the functional response framework to pest management.

1. Introduction

The functional response framework characterizes predator-prey
interactions by the relationship between prey density and the number
of prey captured by a predator (Holling, 1959a). In this well-defined
framework, time acts as a limitation: authors typically consider tem-
poral costs, such as handling time, which, when large, decreases the
number of occasions for prey capture. In the functional response lit-
erature, researchers usually study pest management in two ways. First,
in the context of biological control, a predator is a means of manage-
ment (e.g. Mills and Getz, 1996; Van Den Berg et al., 1997). Functional
responses are then used in the usual way to describe a biocontrol re-
sponse to the pest level. Second, management is added to a predator-
prey system by removing either predator or prey at a given rate. When
management is added to models in this way, the functional response
usually does not vary except if the control method affects predators or
prey behaviour or if the ratio between prey and predator abundance
affects the number of prey captured (e.g. Liu et al., 2006; He et al.,
2012).

An alternate way to model the direct influence of management on
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pests using functional responses would be to consider managers phy-
sically removing or controlling a pest as predators. Although they deal
with a resource and not a pest, fisheries models, using harvesting effort
or harvest rate, are a first step into describing the effect of management
on a resource using a linear relationship (Sutherland, 2001). However,
to our knowledge, the theory of manager functional responses dis-
playing various shapes has not been previously proposed or tested.
Applying functional response literature to human-pest systems would
be powerful as there is an extensive functional response theoretical
background.

Could human-pest interactions be treated as predator-prey inter-
actions in a functional response framework? Managers and predators
tend to have similar behaviours in this context: both wish to remove the
maximum possible number of prey/pests; both have limitations, whe-
ther temporal or monetary, preventing them from maximizing the
number of prey/pests they capture (Hassell, 1978); both face complex
spatial distribution of prey/pest population; and both may employ a
variety of search strategies. In this study, we will explore the functional
response types obtained under the assumption that managers take the
role of predators, pests take the role of prey, and monetary costs
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Fig. 1. Conceptual diagram representing the process determining each simulation run. Start at the top left of the diagram.

constrain managers in a similar way that temporal costs constrain
predators. For example, the pest handling cost for a manager can be
shown to be equivalent to the prey handling time for a predator in the
functional response formulation. Although time plays a major role in
management, we argue that, at the scale of a management season,
monetary costs are the most important limiters of management success;
mostly because the time alloted to management directly depends on
budget.

Although functional response theory usually concerns a random
search in an homogeneous domain, spatial heterogeneity is usually
considered as a norm in the environment (Levin, 1992; Gustafson,
1998) and should be studied for realism. Spatial patterns are usually
classified as regular, random or clustered (Hopkins and Skellam, 1954).
A regular spatial pattern would look like points on a grid whereas a
clustered, or aggregated, spatial pattern would feature isolated groups
of points in space. In each case, the observed pattern depends on the
scale of the study. Indeed, a population could appear randomly dis-
tributed when viewed on a small scale, but clustered on a large scale.
Depending on the spatial distribution of resources the species depends
on, observed patterns could also change from one area to another. Not
taking into account realistic pest spatial distribution in functional re-
sponse studies may include bias and lead to inaccurate determination of
the functional response shape (Ives et al., 1999; Hochberg and Holt,
1999). In this study, we examine the impact of random, clustered and

regular pest spatial patterns.

The predator/manager searching strategy could also have an impact
on the type of functional response observed. Functional response stu-
dies usually assume a random search but other strategies are possible.
The adaptive cluster sampling strategy is an established alternative to
random searching (Thompson, 1990). In this case, after the random
sample of a first set of locations, if the variable of interest in any lo-
cation is bigger than zero, additional nearby locations are added to the
survey. When the pest population is clustered, the adaptive cluster
sampling will efficiently find most of the individuals in a given cluster.
Maxwell et al. (2012) compared adaptive cluster sampling to traditional
transect designs and found out that the former was more efficient than
the latter when the purpose is to survey as many individuals as possible
in well-established populations away from roads in the shortest amount
of time. This was found to be especially true for clustered populations.
The adaptive cluster sampling strategy is thus an efficient survey
strategy that can be easily simulated in our theoretical study. Therefore,
we employed two simple contrasting search strategies: random sam-
pling and adaptive cluster sampling.

The objectives of this theoretical work are: (1) to create simulation
models of pest management using a spatially-explicit individual-based
model and spatially-implicit Monte-Carlo simulations, (2) to derive
simple functions describing the number of pest that managers control as
a function of pest density and corroborate the simulation models, (3) to
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characterize the impact of the different components on the functional
response shape and compare with predator functional response com-
ponents and shapes, and (4) to validate this new framework by applying
it to data using the example of mountain pine beetle in Cypress Hills,
Saskatchewan. Using monetary cost for the manager as an equivalent of
temporal cost for a predator, we are able to make the analogy between
functional responses in predator—prey interactions and human-pest
management systems. This opens the door to applying functional re-
sponse to manager—pest relationships.

2. Methods

We simulated management strategies of pest removal using two
approaches: a spatially-explicit individual-based model and spatially-
implicit Monte-Carlo simulations, and confirmed the results in the
simplest cases by deriving analytical solutions to mathematical models
representing the simulation scenarios. First, we presented the compu-
tational (Section 2.1 and Section 2.2) and mathematical (Section 2.3)
models corresponding to the first two objectives. Second, we explained
how the different parameters defined in the models help in connecting
our ideas to the functional response framework (Section 2.4). Finally,
we applied our models to the mountain pine beetle example (Section
2.5).

In this study, we explored various scenarios so as to capture dif-
ferent functional response behaviours. Each scenario has two elements:
(1) a pest spatial pattern in a 2-dimensional domain, and (2) a man-
agement strategy.

We divided the domain into cells of varying size on a 16 x 16 grid.
Depending on the scenario, the cell size was 1 X 1, 2 X 2 or 8 X 8.
Each cell was characterized by its spatial position in the domain and by
the number of pest items it contained. Fig. 1 represents the process for
each simulation run and Sections 2.1 and 2.2 provide details on each
component. The symbols used in this study are described in Table 1.

2.1. Simulating pest distributions

We examined four types of spatial patterns: random, clustered
within-cells, clustered between-cells and regular point patterns.

2.1.1. Random point process

The random point process employed a homogeneous Poisson pro-
cess using the rpoispp function of the R package spatstat (Baddeley
et al., 2015; R Core Team, 2016). A grid with rectangular cells of
constant area (A) was then superimposed over the whole spatial do-
main. Each cell had the same probability of having a pest, thus, they
were independent of each other.

Table 1
Description of the symbols used in the text.
Symbol Description
A Pest intensity or Average number of individuals in a size-1 grid cell
) Cost of surveying a size-1 cell
v Cost of removing a pest individual
A Cell size/area or Number of contiguous size-1 cells
S Number of empty cells to survey in a row before stopping the

search process

Search area refers indistinctively to A or S

Domain area where management takes place

Probability of finding at least one individual in a grid cell of area A
Expected area explored by managers

Expected number of individuals that are surveyed and controlled
Management budget

Amount of clustering in the negative binomial distribution
Probability of finding zero individuals in a cell of area A

search area

s wmuos g
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2.1.2. Within-cell cluster point process

The within-cell cluster point process sampled a Negative binomial
distribution for the number of pests in each grid cell using the rnbinom
function of the R package stats (R Core Team, 2016). We used the
overdispersion parameter k fixed to 1 to describe the amount of clus-
tering in the distribution. With this method, clusters happened within a
cell and thus, grid cells were independent of each other. This spatial
distribution led to no spatial correlation in the density of pests between
cells but greater variability in the density of pests from one cell to
another than for between-cell clustering. The spatial resolution of the
simulated pest data depended on the size of the square cells in the grid
that we overlaid on top of the spatial domain.

2.1.3. Between-cell cluster point process

The between-cell cluster point process employed a Neyman-Scott
process using the rNeymanScott function of the R package spat-
stat. This method distributed “parent” points in the domain according
to a Poisson point process. Then, it drew the actual points from a
Gaussian distribution around each parent. The final step consisted of
removing the parents. A grid with rectangular cells of constant area (A)
was then superimposed over the whole spatial domain. Thus, there was
a spatial correlation of the density of pests between cells.

2.1.4. Regular point process

The regular point process distributed individuals regularly on a
square grid of size equal to the square root of the total number of in-
dividuals in the domain rounded down to the nearest integer. We po-
sitioned remaining individuals using the same process. We added some
noise proportional to the distance between individuals so as to re-
produce a more biologically relevant spatial pattern. In order to be
distributed uniformly in the domain, each point depended on the lo-
cation of its neighbours. Thus, the number of individuals in each cell
was dependent on each other.

Fig. 2 shows an example of each spatial distribution of points for an
average intensity of 0.2 individuals per grid cell.

2.2. Simulating manager search strategies

We simulated three different management strategies. The first two
were both random searches that differed in the implementation of the
search area parameter: a random search strategy (a) in which man-
agement stops after the manager discovers one empty cell of variable
size and a random search strategy (b) in which the manager stops
searching after a specified number of consecutive empty cells of size 1.
The third strategy was the adaptive cluster sampling strategy.

2.2.1. Random strategy (a): stop after single empty cell of area A

Using a spatially-implicit Monte-Carlo approach, we simulated the
random strategy (a) (stop after single empty cell of area A) for the
spatially uncorrelated pest spatial distribution (Poisson and negative
binomial) with intensity A on a bounded rectangular spatial domain of
area M. This approach could only work with spatially uncorrelated
distribution given the spatially-implicit nature of the process. The
management then proceeded as follows. (1) One cell in the grid was
randomly selected. The number of pest in the cell was drawn from a
Poisson or a negative binomial distribution using, respectively, the R
functions rpois and rnbinom. If the initial cell contained no in-
dividuals, the survey stopped. If it contained at least one individual, all
individuals inside it were surveyed/controlled/eradicated and another
cell was chosen at random. (2) This same process was repeated for the
next cell and the procedure was repeated until either no individuals
were found in a quadrat, all the cells in the management area were
surveyed, or the budget was reached. Note that the random selection of
a new cell was from the cells that had not already been surveyed. Since
the survey area A could be considerably large, when a step would put
managers over the budget, only the fraction of the area allowed by the
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budget was managed.

2.2.2. Random strategy (b): stop after S empty cells

For the random search strategy (b), we used a spatially-explicit in-
dividual-based model that we simulated on all four pest spatial dis-
tributions. This model was computationally intensive compared to the
Monte-Carlo approach so we did not use it for strategy (a). The random
search strategy (b) consisted of randomly choosing cells without re-
placement and removing any pest contained in it. The process stopped
when it reached the budget or the maximum number of empty cells
surveyed in a row (S), whose value depended on the scenario. We de-
pleted the budget in two ways depending on the scenario: by deducting
the cost of surveying a cell (§) * the number of cells surveyed at this
step, and by deducting the cost of removing a pest item (y) * the
number of pest items removed at this step. We did not take any action/
step that would put managers over the budget.

2.2.3. Adaptive cluster sampling strategy

In the adaptive cluster sampling strategy, we chose an initial cell to
survey. If at least one pest was present in the cell, we added the 4 ad-
jacent neighbouring cells to the survey (Von Neumann neighbourhood).
We repeated this around the new cells that contained pests. At each
step, we removed pests found in the surveyed cells. If we found no pest
in the initial cell or in all of the neighbouring cell at some step, we
chose a new initial cell randomly and the process resumed. The process
stopped when it reached the budget or the maximum number of empty
cells surveyed in a row (S). See Fig. 3 for an illustration of this process.
Again, we depleted the budget allowance by an amount defined by the
cost of surveying a cell () * the number of cells surveyed at this step,
and the cost of removing a pest item (y) * the number of pest items
removed at this step. Since the added neighbourhood could be of con-
siderable size, when a step would put managers over the budget, only
the fraction of the area allowed by the budget was managed.

The random strategy (b) (stop after S empty cells) and the adaptive
cluster sampling strategy were deployed on all four pest distributions
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Fig. 2. Spatial distributions of pests on a 16 x 16 lattice with an
intensity of 0.2 individual per grid cell: (A) Poisson spatial dis-
tribution, (B) Negative binomial (within-cell cluster) spatial dis-
tribution with an overdispersion parameter k = 1, (C) Neyman-

4 Scott (between-cell cluster) spatial distribution and (D) Regular

3 spatial distribution. The black dots represent the actual point
patterns from which the lattice spatial distributions are derived.

2 The shades of grey represent the number of pests per grid cell:

1  white (zero individuals) to the darkest grey (four individuals).

0

4

3

2

1

0

and the grid applied on the domain had cells of constant size 1 X 1.

For the strategies simulated with a spatially-explicit model (random
strategy (b) and adaptive cluster sampling), we defined, for simplicity,
the domain as a torus, which means that when a manager traversed the
border of the domain, the manager reappeared on the other side of the
domain.

2.3. Mathematical models

We derived mathematical models of the random sampling in which
management stops after the manager discovers one empty cell of area A
(random strategy (a) described in Section 2.2.1) and the manager
random sampling in which the manager stops searching after S con-
secutive empty size-1 cells (random strategy (b) described in Section
2.2.2) for pest distributions that are spatially uncorrelated from one cell
to another (Poisson and Negative binomial spatial distributions).

2.3.1. Random strategy (a): stop after single empty cell of area A
The probability of finding at least one individual in a grid cell of
area A (A < M) with a Poisson spatial distribution of individuals is

Pr(X > 0; 4, A) =1 — exp(—14) = ¢. (¢}

Note that ¢ < 1. We can then write an expression for the expected area
explored by managers (D) using a strategy like the one described in the
previous section. We can call this the ‘area of discovery’ to connect it to
the functional response ideas.

DA A M) =AQ + ¢ + ¢>+---+pM/A-Y),
AT,

i=0
1_¢M/A)
=A .
( 1-¢ (2)
Note that in Eq. (2) managers are unable to explore more area than
there is in the management area M and so the maximum number of

quadrats is M/A. The number of pests that are eradicated/controlled/
surveyed (E) is proportional to the area explored
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Fig. 3. Step by step images of the adaptive cluster sampling strategy inspecting a clustered (Neyman-Scott process) spatial distributions of pests (in shades of grey:
from white, zero individual, to the darkest grey, four individuals) on a 20 X 20 lattice with an intensity of 0.2 individual per grid cell. The colors represent the steps
taken by the algorithm. The first step (in red) hit an empty cell so another cell is chosen at random (in yellow). The yellow cell contains one individual so it is
removed and the 4 cells of the Von Neumann neighbourhood are surveyed. One of them contains individuals (in green). Individuals are removed and the neigh-
bourhood of the green cell is surveyed. In this neighbourhood, two cells contain individuals (in turquoise) so they are removed and the Von Neumann neighbourhood
of both cells is surveyed. In this new neighbourhood, three cells contains individuals (in blue). The process goes on. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

EWQ, A, M) =D, A, M)A, 3

Therefore, the number of pests that are eradicated/controlled/surveyed
is

E@AM:MGLﬂﬁ)

1-¢ 4

If there is a limited management budget B, each quadrat costs §, and the
cost y is associated with eradicating each pest in addition to treating an
infested cell, then the maximum number of quadrats of area A that can

be explored is ———— < 2 We assume that the budget restricts ex-

ploration such t?l(;{ +af'i areg less than the full area of the management
zone can be explored. The idea of adding a budget, a cost per quadrat,
and a cost per individual is similar to dividing the total foraging time
into searching time and handling time in the Holling's disc equation.

The number of pests that are eradicated/controlled/surveyed becomes

B
1 — pAGr+9)

E(A, A, B, 68, y)=AA
( ) 1=

(5)

If instead we assume that individuals are distributed according to the
Negative binomial distribution and that the number of pests in any cell
is independent of the number in any other cell, we write for a cell of
area 1

A

—k
Pr(X>0;/1,k):1—(1+E) =¢. )

In Eq. (6), k represents the amount of clustering from one cell to

another with small k corresponding to a high degree of clustering.

For cells of area A > 1, the Negative binomial distributed pest data
would have a different spatial resolution as we sample on cells of area
A. Eq. (6) becomes then:

—k
Pr(X>O;/1,A,k)=1—(1+E) = ¢.

k @)

As k — o, Eq. (7) converges to the Poisson case given by Eq. (1). The
derivations for the numbers of individuals eradicated (Egs. (4) and (5))
are still valid for this case.

Table 2 summarizes the equations used for the expected number of
pests controlled depending on the pest spatial distribution for random
strategy (a).

2.3.2. Random strategy (b): stop after S empty cells
In strategy (a), A represents the cell area or the survey of A con-
tiguous size-1 cells and the process stops after one empty step. In

Table 2
Expected number of pests controlled (E) for random strategy (a).
Spatial distribution E ¢
Poisson B Eq. (1): 1 — exp(—AA)
Eq. (5): Al M
q. (5): s
Negative binomial __ B 1a\—k
. 1 gAGY+9) Eq. (7):1—(1+ 7~
Eq. (5): A [1_@3] ( )
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strategy (b), however, the manager surveys an integer number S of
empty cells before stopping. The main difference between random
strategy (a) and random strategy (b) is that the expected number of
individuals removed by exploring A contiguous size-1 cells would, in
theory, be affected by the spatial distribution of individuals while ex-
ploring S randomly picked size-1 cells would not. Below we compare
mathematical models of the management functional response for
random manager searches when pests are distributed according to a
Poisson point process and when pests are distributed according to a
negative binomial point process. Our derivations illustrate that the
expected number of individuals removed can depend on the pest dis-
tribution when multiple empty cells are required before the manager
stops looking for additional pests.

In the case of a Poisson distributed resource, from Eq. (1), we get the
probability that a cell i of area A has zero individuals:

Pr(X; = 0; 4, A) = exp(—14) = 7),. 8

The probability that S different cells of area A have zero individuals in
each cell is:

PriX, s =04, A,S) =)
= (exp(—24))S
=exp(—1AYS). 9)

A and S being multiplied, the probability that a cell (S = 1) of area
A = x has zero individuals (}) is the same as the probability that x
different size-1 cells (S = x, A = 1) have zero individuals in each cell
(gbls). So in this context, gbj‘ = ¢13 . For this reason, the mean number of
individuals managed obtained from the simulation process described
above should match the analytical solution provided in Eq. (5) using Eq.
Q).

In the case of a resource distributed with a negative binomial dis-
tribution, from Eq. (7), we get the probability that a cell i of area A has
zero individuals:

A\

PriXi=0;4,A,k)=|1+ — =1,
£ =(1+2) - o)
The probability that S different cells of area A have zero individuals in

each cell is:

PrX, . s =0;4 A, S, k) =@)S
=((1+ %)"‘)S

=(1+ %)_ks- an

In this case, A and S are not multiplied, so the probability that a cell
(S = 1) of area A = x has zero individuals (11’};) is generally not equal to
the probability that x different size-1 cells (S = x, A = 1) have zero
individuals in each cell (). So in this context, ¥} # 1. The mean
number of individuals managed obtained from the simulation process
described above should generally not match the analytical solution
provided in Eq. (5) using Eq. (7). In this case, instead of Eq. (7), we can
use

M)’ks _ 4

PriXs >0, L, A, S, k)=1—(1+—
s =11+ .

Table 3 summarizes the equations used for the expected number of
pests controlled using the random strategy (b) depending on the pest
spatial distribution.

2.4. Correspondence with functional responses types

To compare human-pest management to functional response in
predator-prey interactions, we considered that pests to managers were
like prey to predators in the functional response framework. We then
assumed that the budget allocated to a manager corresponded to the

Ecological Modelling xxx (xxxX) XXX—-XXX

Table 3
Expected number of pests controlled (E) for random strategy (b).
Spatial distribution E ¢
Poisson B 1 - Eq. (9):1—exp(—2AS)
Eq. (5): Al M
q. (5): =¢

Negative binomial

__B 14\~ ks
. 1-¢AQy+9) Eq. (12):1—-(1+ ©
Eq. (5): A1 [1¢ ( )

foraging time for a predator. Keeping the comparison between mone-
tary and temporal costs in mind and with the assumption that the be-
haviour “processing food/pest” is independent from the behaviour
“searching for food/pest”, we could make the correspondence between
the time needed to search for a prey and the monetary cost requested to
search for a pest (survey), and between the time needed to consume a
prey and the monetary cost requested to remove a pest. In a Type I
functional response scenario, the predator is not affected by its capacity
to consume a prey so the number of prey consumed increases linearly
with the intensity of prey in the domain. Thus, by setting the cost of
removing a pest item (y) to 0, we expected to obtain a linear relation-
ship (Holling Type I) between the number of pest removed and the
intensity of pests in the domain. In a Type II functional response sce-
nario, the predator is limited by its capacity to consume a prey so as the
intensity of prey in the domain increases, the predator cannot consume
more than a certain number of prey and the curve saturates. Thus, by
setting the cost of removing a pest item (y) to be larger than 0 while
maintaining a large search area (A and S both impact the search area),
we expected to obtain a hyperbolic relationship (Holling Type II) be-
tween the number of pest removed for a fixed cost and the intensity of
pests in the domain. In a Type III functional response scenario, at low
intensities of prey, some mechanisms make it more difficult for the
predator to find and consume a prey than at higher intensities. Some
researchers explain this concept using predators’ behaviour (Turchin,
2013). A generalist predator might switch to another prey when the
focus prey density is too low leading to a Type III whereas a specialist
would have no choice but to continue searching for the focus prey
leading to a Type II. In a pest management context, a manager might act
like a specialist by wanting to remove all pest or like a generalist by
being satisfied with a low pest number and switching to another
management activity. Thus, by setting the maximum number of empty
cells surveyed in a row before stopping (S) (or its equivalent A: number
of contiguous size-1 cells, see previous section) to a low number and by
setting y > 0, we would expect that Eq. (5) takes the sigmoid shape of
a Type III functional response. We thereby simulate a manager esti-
mating that the probability of encountering a pest is too low to be worth
the search effort at a low pest density.

2.5. Application

We applied our modelling framework to the mountain pine beetle
(Dendroctonus ponderosae, Hopkins 1902) management in Cypress Hills,
Saskatchewan, Canada. The mountain pine beetle is a bark beetle that
infests and kills pine trees in western North-America. Mountain pine
beetles have two main population stages: an endemic stage in which
there are not enough individuals to overcome healthy trees, so popu-
lations persist by attacking damaged trees in association with other
bark beetles, and an epidemic stage in which mountain pine beetles are
a threat to vast stands of healthy pines. There are currently several
epidemic populations, including one in the Cypress Hills park.
Mountain pine beetle populations exhibit a type of Allee effect (Allee,
1931; Stephens et al., 1999): below a certain number of individuals, a
local epidemic population cannot persist and will either go extinct or
turn to an endemic population stage.
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2.5.1. Pest spatial distribution

During an epidemic, the attacked trees are usually spatially ag-
gregated due to beetle offspring emerging from one previously attacked
tree and attacking susceptible trees within several hundred meters
(Safranyik and Carroll, 2006; Robertson et al., 2007). This pattern re-
sembles the Neyman-Scott process described in Section 2.1.3. There-
fore, we fitted a Neyman-Scott process to attacked trees locations in
2011 and 2012 from several portions of the park with different pest
densities using the vargamma.estpcf function of the R package
spatstat. This function uses the pair correlation function to fit the
point process to a point pattern by the method of minimum contrast.

In addition to the parameter values, we modified the Neyman-Scott
process in our simulations to draw points around parents from a fat-tail
distribution (here an exponential distribution) which corresponds
better to the mountain pine beetle behaviour than a Gaussian dis-
tribution due to the occurrence of long-distance dispersal events
(Safranyik and Carroll, 2006; Robertson et al., 2007; Goodsman et al.,
2016).

2.5.2. Management strategy

The management strategy implemented in Cypress Hills consists of
locating previously attacked trees (red-top trees easily detectable
during aerial surveys) and surveying the surrounding neighbourhood
for new attacks. We simulated this process by adapting the adaptive
cluster sampling strategy. The strategy is deployed at the location of
previously attacked trees instead of random locations. The process
continues until all cells containing previously attacked trees are

surveyed. We set the managers ability to detect newly attacked trees
within the survey area to 89% (value obtained for Cypress Hills from M.
Kunegel-Lion, unpublished data).

2.5.3. Simulations

Using the fitted pest spatial distribution and the modified adaptive
cluster sampling strategy, we simulated the management process
10000 times for each pest density on a 6.5km X 9.9 km rectangular
domain with grid cells of size 100 m X 100 m. Thus, the grain and ex-
tent of the domain is the same order of magnitude as the grain and
extent of the management area in Cypress Hills. The management costs
(6 and v), and the total budget (B) values were chosen as proportional
to the actual costs and budget in the park for 2011 and 2012. We then
compared the curve obtained to actual numbers of attacked trees con-
trolled in several areas of the park presenting different densities of at-
tacked trees during 2011 and 2012.

2.5.4. Management goal feasibility

Knowing about management functional responses shape can help us
assess the feasibility of a management goal. We chose two ways of
expressing a management goal: (1) managers would like to remove at
least x% of all the pests, and (2) managers would like to leave no more
than x individuals per unit of area. This second management goal
makes sense for populations exhibiting an Allee effect, as the mountain
pine beetle does. Indeed, it is not necessary to put more effort into
control when the pest population will not persist below a certain
number. We simulated the management process described above 1000
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times for increasing budget values and compared the management
functional response curves obtained to the two management goals. To
place the functional response curves and the management goals on the
same scale, we divided the number of individuals removed by the do-
main area, thereby graphing the density of pest controlled by the total
pest density. Note that this only changed the y-axis scale and therefore
the interpretation of the curve did not change.

3. Results

For each combination of pest distribution, management strategy,
and parameter values, we compared the means of 2000 simulations to
the analytical solutions, when calculated. The budget value used in the
simulations and analytical solutions was 300, limiting the number of
cells managers can explore. The values of § and y were either 10 or 0
and the values of A and S either 64 (one 8 X 8-cell or 64 1 X 1-cells), 4
(one 2 x 2-cell or four 1 x 1-cells) or 1 (one 1 x 1-cell) depending on
the scenario. We generated all negative binomial point processes using
the parameter k = 1 in both the simulations and the analytical solution.

3.1. Varying the management costs

When the cost of surveying a cell § increases, the functional re-
sponse slope decreases and when the cost of removing a pest item y
increases, the functional response curve saturates as seen on Fig. 4 for
the Poisson distribution. This is true for all the management strategies
and their analytical solutions on all pest distributions. Note that the
curve on Fig. 4a continues to increase linearly above 50 individuals
removed. See Appendix A, Fig. A.1 for the non-truncated graph.

3.2. Varying the management strategy and the pest spatial distribution

For a Poisson pest spatial distribution, the functional response
curves for the simulations of the random strategies (a) and (b) are the
same as predicted by the derivations of analytical solutions. For a ne-
gative binomial pest spatial distribution, the functional response curves
for the simulations of the random strategies (a) and (b) are extremely
similar even though the expected means differ due to a different pest
spatial resolution. This can be seen on Fig. 5.

Unexpectedly, the pest spatial distribution does little to change the
functional response curves. The adaptive cluster sampling and the
random strategies present the same pattern with little variation from
one strategy to another except for Neyman-Scott and regular pest spa-
tial distribution. Indeed for a Neyman-Scott distribution, the adaptive
cluster sampling strategy does often better than the random strategy (b)
especially for the parameters values § = 10, y = 0 (Fig. 5). For a regular
distribution, the adaptive cluster sampling strategy results in oscilla-
tions around the random strategy mean especially for the parameters
values § = 10, y = 0 (Fig. 5).

3.3. Varying the search area

As expected, decreasing the search area, as represented by A or S
(see Section 2), decreases the number of pests found and controlled at
low pest intensity levels for both random strategies and leads to a curve
resembling a Type III when y = 10 (Fig. 6). In the Negative binomial
case, there are differences between random strategies which might be
due to the difference between A and S as shown in Eq. (12) or to the
difference in the pest spatial resolution when A = 1 and when A > 1.
Those two cases cannot be distinguished given our parameter values.

3.4. Theoretical results summary
Additional simulations (see Appendix B, Fig. B.1 and B.2) show that

when A or S are large, the cost per cell to survey § > 0 and the cost per
pest to remove y — 0, the functional response tended to a Type I. When
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A or S are large, y > 0 and § — 0, the functional response tends to a
Type I/II which is linear like a Type I at first with a progressive sa-
turation like a Type II (Jeschke et al., 2004). When y and § > 0, the
functional response tends to a Type II. To summarize, to obtain a Type I,
weset§ > Oandy = 0. To obtain a Type I/II, we set § = 0 and y > 0.
To obtain a Type II, we set § > 0 and y > 0. To obtain a Type III, we
set A or S small, § small and y > 0 (Fig. 6).

In addition, variations in budget did not change the qualitative
shapes of functional responses.

In conclusion, the pest spatial distribution did not have a large
impact on the functional response shape and neither did the search
strategy. However, the costs associated with the management strategy
as well as the search area had a great impact on the functional response
type, as expected. The analytical solutions generally corroborated the
simulations although a slight mismatch is apparent, especially for the
negative binomial case: the mean values from the simulations of
random strategies (a) and (b) are below their respective expected
means.

3.5. Correspondence with predator functional response

Using Holling's disk equation (Holling, 1959b; Table 4):
_ dTN
C1+dTN’ (13)

a

we can compare the parameters from predator and manager functional
responses. Table 4 summarize the parameter equivalences.

As stated before, the cost of pest removal (y) is the manager
equivalent of the handling time (T3). This is corroborated by the similar
effect of y and T} on functional responses. Indeed, as seen on Fig. 4,
introducing this cost causes the apparition of an asymptote in the curve.
Likewise, the survey cost (8) is the manager equivalent of the searching
time. At low densities of prey/pest, the predator/manager spends more
of its time/budget on searching rather than handling/removing. This is
presented in Eq. (13) by the encounter rate a’, which represents the
searching efficiency or the number of prey items attacked per unit of
time at low prey densities. The manager equivalent to a’ would then be
1/6. Additionally, the total foraging time (T) in predator functional
response would be the manager's budget (B). Therefore, the slope of the
response, corresponding to a’T, will be B/§ and the asymptote, corre-
sponding to T/Tp, B/y (Table 4). For § = 10 and B = 300 (Fig. 4b and
d), the slope at low densities is 30 which corresponds to B/§ = 300/10.
For y = 10 and B = 300 (Fig. 4c and d), the asymptote is 30 which
corresponds to B/y = 300/10. These comparisons hold for different
values of § > 0 and vy > 0 (Appendix B, Fig. B.1 and B.2). These
equivalences allow us to use Eq. (13) as an approximation for Eq. (5) as
long as A is large, § > 0, the management strategy random, and the
pest spatial distribution Poisson. See Appendix C, Fig. C.1 for the
comparison between the results of Egs. (5) and (13).

3.6. Application

The fitted pest spatial distribution of the mountain pine beetle in-
fested trees has the mean number of points per cluster 67 *= 55
(standard deviation) and the mean cluster size 266 + 131. The man-
agement strategy has costs of surveying a cell § = 231 units and cost of
removing a pest y = 181 units for a budget set to 144 000 units.

All actual numbers of attacked trees controlled but one are within
95% of the simulations’ distribution as seen on Fig. 7. The remaining
number is within 99% of the simulations’ distribution. The simulations’
mean shows a Type II functional response.

According to Table 4, we expected that an increase in budget would
lead to an increase in slope and asymptote. However, our simulations
show that the asymptote increases with an increasing budget but the
slope does not (Fig. 8). Applying the adaptive cluster sampling search to
Cypress Hills instead of the search described in Section 2.5 shows that it
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Fig. 5. Functional response curves when varying the management strategy and the pest spatial distribution for fixed values of A = 64 and S = 1 for the random
strategy (a) and A = 1 and S = 64 for the random strategy (b) and the Adaptive Cluster Sampling strategy. Circles represent the means of 2000 simulations of the
Adaptive Cluster Sampling strategy, pluses of the random strategy (a), and crosses of the random strategy (b). Solid lines represent the values for the analytical
solution of random strategy (a) and (b) in the Poisson case and for the analytical solution of random strategy (a) in the negative binomial case. Dotted lines represent
the values for the analytical solution of random strategy (b) in the negative binomial case.

is the type of search strategy and not the parameter values that is re-
sponsible for the constant slope at low pest intensity (see Appendix D,
Fig. D.1). Indeed, the adaptive cluster sampling process searches cells
until the budget is reached whereas the process described in Section 2.5
only searches cells around a fixed number of previously infested trees
which limits the number of individuals managers could control with a
certain budget.

Fig. 8 also shows the management goals. If the functional response
curve is on or above the management line, the goal is reached, other-
wise not enough individuals are controlled to meet the management
goal. If the desired management efficiency is above 20% removal, the
goal is unattainable regardless of the budget (Fig. 8). If, however, the
goal is the removal of all individuals above a certain threshold, it is
possible to have an effective management at low pest intensity

depending on the budget and the threshold value.

4. Discussion

Considering that pests to managers were like prey to predators, we
were able to draw an analogy between functional responses in pre-
dator-prey interactions and human-pest management. The searching
and handling time were replaced by the surveying and removal costs.
The costs associated with the management strategy as well as the search
area were the main factors influencing the functional response type as
expected. The point process and the search strategy impacted the
manager efficacy to a lesser extent. Our framework was applied to the
mountain pine beetle epidemic in Cypress Hills, Saskatchewan, Canada.

There is a slight mismatch between the analytical solutions of the
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Table 4

Correspondence between predator and manager functional response compo-

nents.

Predator-prey

Manager—pest

Number of prey items attacked N, Number of pest items removed E
Prey density N Pest density A
Total foraging time T Budget B
Encounter rate a Detection rate 1/8
Handling time Ty Cost of pest removal %
Slope aT Slope B/§
Asymptote T/Ty Asymptote B/y

two random strategies and their simulations. Indeed, the mean values
from the simulations are below their respective expected means. In the
simulations, if a step would put managers over the budget, only a
fraction of the area would be actually surveyed and controlled (random
strategy (a)) or the step would not be taken (random strategy (b)).
Therefore, the whole budget might not be used due to rounding in the
calculations and the number of pest controlled would then be slightly
lower than what it could have been without this process. This could
explain the differences between simulation means and analytical solu-
tions of the random strategies (a) and (b). However, the functional
response shape does not change between the simulations and the ana-
lytical solutions. Accordingly, we can assume that the functional re-
sponse shapes in the case of the adaptive cluster sampling and in the
case of the Neyman-Scott and regular pest distributions are not biased
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by the budget handling process of the simulations although the values
might be slightly underestimated.

The pest spatial resolution was chosen at the scale of an area-A grid
cell. This resolution does not impact the Poisson results when the area
changes as the sum of Poisson-distributed variables is also Poisson-
distributed. However, this is not the case for negative binomially dis-
tributed pests. Changing the cell area changes the distribution grain.
Therefore, random strategies (a) and (b) consider a different distribu-
tion grain for the negative binomial distribution and the results cannot
be compared. For management simulations involving the Neyman-Scott
and regular distributions, we only consider random strategy (b) and the
adaptive cluster sampling strategy which have the same cell size A = 1
and, therefore, can be readily compared.

In the functional response theory, the predator distribution is as-
sumed homogeneous. The impact of a clumped predator population on
the kill rate lead to the establishment of the aggregative response
theory (Cosner et al., 1999). However, the functional response theory
originally assumes also a homogeneous distribution of prey in the do-
main. This could weaken the application of this framework to real
systems where the prey distribution is often heterogeneous as well as
dynamic in time (Arditi and Ginzburg, 1989; Ives et al., 1999). Several
studies mention this issue. Nachman (2006) found that switching the
prey spatial distribution from random to aggregated changed the
functional response type from a Type II to a Type III as predators adopt
a non-random searching behaviour and aggregate in prey clusters.
Hossie and Murray (2016) found that for ratio-dependent functional
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Fig. 7. Functional response of the mountain pine beetle manage-
ment in Cypress Hills, Saskatchewan. The black line represents the
mean of 10 000 simulations of the management process. The grey
areas represent 90%, 95% and 99% of the simulations’ distribu-
tion. The points represent the actual values obtained by managers
in Cypress Hills in 2011 and 2012.
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Fig. 8. Functional response of the mountain pine beetle management in Cypress
Hills, Saskatchewan. Solid lines represent the mean of 1000 simulations of the
management process for different budget values: 1 x 10°, 3 x 10°, 5 x 10°,
and 7 x 10°. Dotted lines represent the management goal 1: removing 80% and
20% of all the individuals. The dashed line represents the management goal 2:
removing all individuals above the threshold 0.5 individual per cell.

responses, ie. functional responses depending on the density of pre-
dators, the pest spatial distribution changed the functional response
shape. Rincon et al. (2017) found that the functional response shape
differs with the difference between the predator and the prey dis-
tributions and with the predator foraging strategy. Those studies differ
from ours by the fact that several predators interact and the interaction
between predator and prey aggregation patterns lead to a change in the
functional response shape. However, in our case of a single predator/
manager, we highlight the minimal impact of the point process on the
functional response shape. Thus, for prey-dependent functional re-
sponses, in opposition to ratio-dependent functional responses, the prey
spatial distribution seems to have little significance.

Similarly, our results show the minimal impact of the management
strategy on the functional response shape. This agrees with Berec et al.
(2015) who found that survey spatial arrangements (random or reg-
ularly spaced) have little impact on the pest detection probability. This
is an important information for pest managers who can then minimize
costs by choosing a cheaper strategy. However, we should keep in mind
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that when the pest is spatially clustered, a method resembling the
adaptive cluster sampling provide slightly better results. Unlike other
studies focused on predator functional responses when the predator
uses a random search strategy (e.g. Avgar et al., 2011), our results show
that the mean number of individuals controlled varies, to some degree,
with the spatial distribution of pests. Avgar et al. (2011) found that
when employing a random search strategy, the expected number of
individuals managed should be the same regardless of the individual
spatial distribution because the probability to have at least one in-
dividual in a random cell becomes independent of the adjacent cells. If
we take into account the specifics of our study, we can explain the
difference. Considering random search strategy (a): multiple contiguous
size-1 cells are randomly selected so the number of individuals con-
trolled is spatially correlated for the Neyman-Scott and regular pro-
cesses. Therefore, the expected number of individuals managed in those
cases will be different than the expected number of individuals man-
aged from a Poisson process or a negative binomial distribution. The
Poisson and negative binomial cases should have the same means since
the cells are not spatially correlated. Considering random search
strategy (b): with a Neyman-Scott spatial pattern it is more likely to get
multiple consecutive empty cells before stopping than for a Poisson
spatial pattern. For a regular pattern, it is less likely. The expected
number of individuals managed for a Neyman-Scott and regular pro-
cesses would be different than for a Poisson process or a negative bi-
nomial distribution. Again, the Poisson and negative binomial cases
should have the same means since the cells are not spatially correlated.

We show that non-random search (adaptive cluster sampling) on an
aggregated pest spatial distribution such as the one produced by a
Neyman-Scott process leads to higher numbers of pest controlled than
on a random pest distribution. However, this is not the case on a
Negative binomial distribution. This difference is due to the details of
the adaptive cluster sampling process. Indeed, in this strategy, the
managers make decisions on which cells to survey. Considering that the
Neyman-Scott process produces aggregation among cells whereas the
Negative binomial process produces aggregation within cells with the
among-cell pattern resembling a random pattern, it makes sense for the
random and adaptive cluster sampling strategies to be similar on a
Negative binomial pest spatial distribution but different on a Neyman-
Scott distribution. Managers following a non-random search strategy on
a Neyman-Scott pest spatial distribution are more efficient than
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managers following a random search since they explore the neigh-
bouring cells when they find pests in a cell. This result agrees with
Nachman (2006) who found in the analysis of their predator-prey
model that predators searching non-randomly on an aggregated prey
distribution have higher predation rates than random search.

Functional response theory is widely used to assess the impact of a
predator on a prey population (e.g Messier, 1994; Finke and Denno,
2002). This framework provides a well-studied and reliable method to
assess the impact of management on a pest population. Furthermore,
knowing aspects of the functional response can inform pest manage-
ment in several different ways. Human management could be efficiently
and quantitatively compared to other control methods such as biolo-
gical control. This idea would be extended to give comparisons across
different methods and different locations. For instance, different
methods could be compared at the same location or the same method
could be compared at different locations by contrasting functional re-
sponse curves obtained analytically or by simulation.

To give further insight, manager functional responses could be in-
cluded in dynamical systems to represent human impact on a pest po-
pulation. For example, in the Cypress Hills case, future steps could in-
clude using this functional response in a population dynamics model to
study the evolution of the beetle population over the years with a
realistic incorporation of the management effect on the population. In
the same way functional response curves inform about stability of
predator-prey interactions (Dick et al., 2013), in our study, they could
tell managers whether control would leave a refuge for the pest or lead
to the pest extinction. Indeed, in a Type III functional response scenario,
management is less efficient at low pest densities and, thus, small pest
populations could persist (Murdoch and Oaten, 1975). However in a
Type II functional response scenario most pest would be eradicated,
even if they occur at low density (Hassell, 1978). With respect to con-
trol of mountain pine beetle in Cypress Hills, the Type II functional
response suggests a high efficiency of managers at low pest densities.
This is consistent with the strict management policy in Cypress Hills to
try to control all infested trees. The fact that true values for the number
of individuals controlled lie above those simulated in Fig. 7 suggests
that managers in Cypress Hills are likely finding the means to make the
process even more efficient than our model would predict.

From a practical perspective, managers are typically interested in
controlling a certain proportion of pests, given an environmental con-
text and a particular strategy. For example, in some areas of the pro-
vince of Alberta, Canada, infested by the mountain pine beetle, the
management goal is to reduce populations by 80% (Alberta Sustainable
Resource Development, 2007) using individual tree removal. Our
model results, as shown in Figs. 7 and 8, allow for such a calculation to
be made. By comparing this goal to the detection and control rate (=
slope of the functional response curve; equivalent to the attack rate),
the management functional response can give direct insights on the goal
feasibility. We illustrated this point using the Cypress Hills case study.
The results showed that an 80% control efficiency, such as the target
used in some areas in Alberta, would not be feasible in Cypress Hills
given the current management strategy and parameters values. If the
functional response resembled a type III instead of a type II, there could
be cases where management would be efficient only at intermediate
pest intensity. However, decreasing the pest population below a certain
threshold would be more appropriate than a removal percentage in the
Cypress Hills case. Goodsman and Lewis (2016) found Allee threshold
values of 3.789 x 10~ % and 5.311 x 10> infested stems per m> for
two times series of mountain pine beetle infestation in central Idaho.
Therefore, a management threshold of 0.5 individuals per
100m X 100 m cell such as the one used in the Cypress Hills example
would be below such Allee threshold. Moreover, we showed that the
pest intensity in Cypress Hills is always below 0.5 individual per cell
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which means that managers are probably efficiently reducing local
mountain pine beetle populations below the Allee threshold. However,
a non-spatial Allee threshold could be an issue as the within-tree pro-
ductivity of the beetle varies in time and space (Goodsman and Lewis,
2016). As an alternative, varying the management strategy, such as
adding search locations beyond the neighbourhood of previously in-
fested trees until the budget is reached, would allow managers to meet a
certain removal percentage depending on the budget amount.

In summary, functional response is a tool to help pest management,
for example by providing a means to assess current strategies, to
compare with alternative strategies, to test various strategies in silico
before implementation, to provide a realistic control component in a
population dynamics model, and to assess the feasibility of a manage-
ment goal.

One constraint to the application of this method, as in regular
functional response studies, is the need for several levels of pest density
to be able to draw a functional response curve. In our application to
mountain pine beetle, we got around this issue by dividing the infested
area in portions of different pest densities. This might not be sufficient
to draw an entire functional response curve but simple simulations
could help complete the curve in this case.

Researchers often complement the functional response with a nu-
merical response in predator numbers and sometimes an aggregative
response describing the distribution of predators (Turchin, 2013). We
could argue that in a human-pest management scenario, the numerical
and aggregative responses are negligible or even non-existent. Indeed,
the number or aggregation level of managers might not be relevant for
two reasons: (1) managers usually group as a team/unit, in our study,
this unit represent “the manager” and (2) there is no competition be-
tween managers or teams, when enough persons are present to make
several teams they often do not survey the same area but rather divide
the entire management domain between themselves in order to be ef-
ficient. However, one could study the social impact of pest management
and thus be interested in new hires in response to an increasing pest
abundance. This could be modelled by a growing manager population
and be analogous to predator numerical responses. Finally, the cost of
moving from one location to another was not taken into account in our
study for simplicity but it could be added easily.

To conclude, the functional response framework can be adapted to
model human-pest interactions and provide insights on management.
Furthermore, this framework could be generalized to any interaction
involving humans “predating” on their environment. Indeed, instead of
managing pest species, the goal could simply be the study of human
impact on a resource or species at risk. The shape of the functional
response curve would then inform us about the quantitative influence
humans have on certain populations and could be included in harvest
models.
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Appendix A
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Fig. A.1. Functional response curves for fixed values of § = 0, y = 0, A = 64 and S = 1 for the random strategy (a) and A = 1 and S = 64 for the random strategy (b)
and the Adaptive Cluster Sampling strategy, and for a Poisson pest spatial distribution. Circles represent the means of 2000 simulations of the Adaptive Cluster
Sampling strategy, pluses of the random strategy (a), and crosses of the random strategy (b). Solid lines represent the values for the analytical solution of random
strategy (a) and (b).

Appendix B

d fixed, v varying

v fixed, & varying

Number of individuals removed

Number of individuals removed

200 300 400

100

cost fixed to 0 cost fixed to 10

50
I

40

0.0 05 1.0 1.5 0.0 05 1.0 15

T T T T T T T T
0.0 0.5 1.0 15 0.0 0.5 1.0 15

Pest intensity A Pest intensity A

13

Fig. B.1. Functional response curves showing
the impact of one of the cost parameters (the
survey cost & or the removal cost y) when the
other is fixed for the random strategies (a) and
(b) on a Poisson pest spatial distribution. The
shades of grey represent the values for the
varying cost parameter from black (cost = 0)
to light grey (cost = 10). The search area is set
to 64 and the budget to 300.



M. Kunegel-Lion et al.

Number of individuals removed

15

10

0.0

T T I
0.5 1.0 1.5

Pest intensity A

Ecological Modelling xxx (xxxX) XXX—-XXX

Fig. B.2. Functional response curves for fixed values of survey cost § = 10, removal cost y = 10 and for the random strategies (a) and (b) on a Poisson pest spatial
distribution. The shades of grey represent the values of the search area A: light grey A = 1 to black A = 64.

Appendix C
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Fig. C.1. Functional response curves for fixed values of survey cost § = 10, removal cost y = 10 and for a random strategy on a Poisson pest spatial distribution. The
search area is set to 64 and the budget to 300. The black solid line represents the result of Eq. (5) and the grey dotted line represents the result of equation (13).

Appendix D
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Fig. D.1. Functional response of the mountain pine beetle management in Cypress Hills, Saskatchewan using the adaptive cluster sampling process. Solid lines
represent the mean of 1000 simulations of the management process for different budget values: 1 x 10°, 3 x 10°, 5 x 10°, and 7 x 10°. Dotted lines represent the
management goal 1: removing 80% and 20% of all the individuals. The dashed line represent the management goal 2: removing all individuals above the threshold

0.5 individual per cell.

14



M. Kunegel-Lion et al.

References

Alberta Sustainable Resource Development, 2007. Mountain Pine Beetle Management
Strategy.

Allee, W.C., 1931. Animal aggregations. A Study in General Sociology. The University of
Chicago Press, Chicago.

Arditi, R., Ginzburg, L.R., 1989. Coupling in predator-prey dynamics: ratio-dependence.
J. Theor. Biol. 139, 311-326.

Avgar, T., Kuefler, D., Fryxell, J.M., 2011. Linking rates of diffusion and consumption in
relation to resources. Am. Nat. 178, 182-190. https://doi.org/10.1086/660825.

Baddeley, A., Rubak, E., Turner, R., 2015. Spatial Point Patterns: Methodology and
Applications with R. Chapman and Hall/CRC Press, London.

Berec, L., Kean, J.M., Epanchin-Niell, R., Liebhold, A.M., Haight, R.G., 2015. Designing
efficient surveys: spatial arrangement of sample points for detection of invasive
species. Biol. Invas. 17, 445-459. https://doi.org/10.1007/510530-014-0742-x.

Cosner, C., DeAngelis, D.L., Ault, J.S., Olson, D.B., 1999. Effects of spatial grouping on the
functional response of predators. Theor. Popul. Biol. 56, 65-75. https://doi.org/10.
1006/tpbi.1999.1414.

Dick, J.T.A., Alexander, M.E., Jeschke, J.M., Ricciardi, A., Maclsaac, H.J., Robinson, T.B.,
Kumschick, S., Weyl, O.L.F., Dunn, A.M., Hatcher, M.J., Paterson, R.A., Farnsworth,
K.D., Richardson, D.M., 2013. Advancing impact prediction and hypothesis testing in
invasion ecology using a comparative functional response approach. Biol. Invas. 16,
735-753. https://doi.org/10.1007/s10530-013-0550-8.

Finke, D.L., Denno, R.F., 2002. Intraguild predation diminished in complex-structured
vegetation: implications for prey suppression. Ecology 83, 643-652. https://doi.org/
10.1890/0012-9658(2002)083[0643:IPDICS]2.0.CO;2.

Goodsman, D.W., Koch, D., Whitehouse, C., Evenden, M.L., Cooke, B.J., Lewis, M.A.,
2016. Aggregation and a strong Allee effect in a cooperative outbreak insect. Ecol.
Appl. 26, 2623-2636. https://doi.org/10.1002/eap.1404.

Goodsman, D.W., Lewis, M.A., 2016. The minimum founding population in dispersing
organisms subject to strong Allee effects. Methods Ecol. Evol. 7, 1100-1109. https://
doi.org/10.1111/2041-210X.12573.

Gustafson, E.J., 1998. Quantifying landscape spatial pattern: what is the state of the art?
Ecosystems 1, 143-156.

Hassell, M.P., 1978. The Dynamics of Arthropod Predator-prey Systems. Princeton
University Press.

He, Y., Zhao, J., Zheng, Y., Desneux, N., Wu, K., 2012. Lethal effect of imidacloprid on the
coccinellid predator Serangium japonicum and sublethal effects on predator voracity
and on functional response to the whitefly Bemisia tabaci. Ecotoxicology 21,
1291-1300. https://doi.org/10.1007/s10646-012-0883-6.

Hochberg, M.E., Holt, R.D., 1999. The uniformity and density of pest exploitation as
guides to success in biological control. In: Hawkins, B.A., Cornell, H.V. (Eds.),
Theoretical Approaches to Biology Control. Cambridge University Press, Cambridge,
pp. 71-88.

Holling, C.S., 1959a. The components of predation as revealed by a study of small-
mammal predation of the European pine sawfly. Can. Entomol. 91, 293-320. https://
doi.org/10.4039/Ent91293-5.

Holling, C.S., 1959b. Some characteristics of simple types of predation and parasitism.
Can. Entomol. 91, 385-398. https://doi.org/10.4039/Ent91385-7.

Hopkins, B., Skellam, J.G., 1954. A new method for determining the type of distribution
of plant individuals. Ann. Bot. 18, 213-227.

Hossie, T.J., Murray, D.L., 2016. Spatial arrangement of prey affects the shape of ratio-

15

Ecological Modelling xxx (xxxX) XXX—-XXX

dependent functional response in strongly antagonistic predators. Ecology 97,
834-841. https://doi.org/10.1890/15-1535.1.

Ives, A.R., Schooler, S.S., Jagar, V.J., Knuteson, S.E., Grbic, M., Settle, W.H., 1999.
Variability and parasitoid foraging efficiency: a case study of pea aphids and Aphidius
ervi. Am. Nat. 154, 652-673. https://doi.org/10.1086,/303269.

Jeschke, J.M., Kopp, M., Tollrian, R., 2004. Consumer-food systems: why type I functional
responses are exclusive to filter feeders. Biol. Rev. 79, 337-349. https://doi.org/10.
1017/51464793103006286.

Levin, S.A., 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur
Award Lecture. Ecology 73, 1943-1967. https://doi.org/10.2307/1941447.

Liu, B., Teng, Z., Chen, L., 2006. Analysis of a predator-prey model with Holling II
functional response concerning impulsive control strategy. J. Comput. Appl. Math.
193, 347-362. https://doi.org/10.1016/j.cam.2005.06.023.

Maxwell, B.D., Backus, V., Hohmann, M.G., Irvine, K.M., Lawrence, P., Lehnhoff, E.A.,
Rew, L.J., 2012. Comparison of transect-based standard and adaptive sampling
methods for invasive plant species. Invas. Plant Sci. Manag. 5, 178-193. https://doi.
org/10.1614/IPSM-D-11-00022.1.

Messier, F., 1994. Ungulate population models with predation: a case study with the
North American moose. Ecology 75, 478-488. https://doi.org/10.2307/1939551.

Mills, N.J., Getz, W.M., 1996. Modelling the biological control of insect pests: a review of
host-parasitoid models. Ecol. Model. 92, 121-143. https://doi.org/10.1016/0304-
3800(95)00177-8.

Murdoch, W.W., Oaten, A., 1975. Predation and population stability. Adv. Ecol. Res. 9,
1-131.

Nachman, G., 2006. A functional response model of a predator population foraging in a
patchy habitat. J. Anim. Ecol. 75, 948-958. https://doi.org/10.1111/j. 1365-2656.
2006.01114.x.

R Core Team, 2016. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rincon, D.F., Caiias, L.A., Hoy, C.W., 2017. Modeling changes in predator functional
response to prey across spatial scales. Theor. Ecol. 1-13. https://doi.org/10.1007/
512080-017-0338-z.

Robertson, C., Nelson, T.A., Boots, B., 2007. Mountain pine beetle dispersal: the spatial-
temporal interaction of infestations. Forest Sci. 53, 395-405.

Safranyik, L., Carroll, A.L., 2006. The biology and epidemiology of the mountain pine
beetle in lodgepole pine forests. In: Safranyik, L., Wilson, B. (Eds.), The Mountain
Pine Beetle: A Synthesis of Biology, Management and Impacts on Lodgepole Pine.
Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria,
Canada, pp. 3-66.

Stephens, P.A., Sutherland, W.J., Freckleton, R.P., 1999. What is the Allee effect? Oikos
87, 185-190. https://doi.org/10.2307/3547011.

Sutherland, W.J., 2001. Sustainable exploitation: a review of principles and methods.
Wildl. Biol. 7, 131-140.

Thompson, S.K., 1990. Adaptive cluster sampling. J. Am. Stat. Assoc. 85, 1050. https://
doi.org/10.2307/2289601.

Turchin, P., 2013. Complex Population Dynamics: A Theoretical/Empirical Synthesis
(MPB-35). Monographs in Population Biology. Princeton University Press, Princeton.

Van Den Berg, H., Ankasah, D., Muhammad, A., Rusli, R., Widayanto, H.A., Wirasto, H.B.,
Yully, I., 1997. Evaluating the role of predation in population fluctuations of the
soybean aphid Aphis glycines in farmer's fields in Indonesia. J. Appl. Ecol. 34,
971-984. https://doi.org/10.2307/2405287.


http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0005
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0005
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0010
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0010
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0015
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0015
https://doi.org/10.1086/660825
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0025
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0025
https://doi.org/10.1007/s10530-014-0742-x
https://doi.org/10.1006/tpbi.1999.1414
https://doi.org/10.1006/tpbi.1999.1414
https://doi.org/10.1007/s10530-013-0550-8
https://doi.org/10.1890/0012-9658(2002)083[0643:IPDICS]2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[0643:IPDICS]2.0.CO;2
https://doi.org/10.1002/eap.1404
https://doi.org/10.1111/2041-210X.12573
https://doi.org/10.1111/2041-210X.12573
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0060
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0060
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0065
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0065
https://doi.org/10.1007/s10646-012-0883-6
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0075
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0075
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0075
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0075
https://doi.org/10.4039/Ent91293-5
https://doi.org/10.4039/Ent91293-5
https://doi.org/10.4039/Ent91385-7
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0090
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0090
https://doi.org/10.1890/15-1535.1
https://doi.org/10.1086/303269
https://doi.org/10.1017/S1464793103006286
https://doi.org/10.1017/S1464793103006286
https://doi.org/10.2307/1941447
https://doi.org/10.1016/j.cam.2005.06.023
https://doi.org/10.1614/IPSM-D-11-00022.1
https://doi.org/10.1614/IPSM-D-11-00022.1
https://doi.org/10.2307/1939551
https://doi.org/10.1016/0304-3800(95)00177-8
https://doi.org/10.1016/0304-3800(95)00177-8
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0135
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0135
https://doi.org/10.1111/j. 1365-2656.2006.01114.x
https://doi.org/10.1111/j. 1365-2656.2006.01114.x
https://www.R-project.org/
https://doi.org/10.1007/s12080-017-0338-z
https://doi.org/10.1007/s12080-017-0338-z
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0155
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0155
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0160
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0160
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0160
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0160
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0160
https://doi.org/10.2307/3547011
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0170
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0170
https://doi.org/10.2307/2289601
https://doi.org/10.2307/2289601
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0180
http://refhub.elsevier.com/S0304-3800(18)30336-3/sbref0180
https://doi.org/10.2307/2405287

	When managers forage for pests: Implementing the functional response in pest management
	Introduction
	Methods
	Simulating pest distributions
	Random point process
	Within-cell cluster point process
	Between-cell cluster point process
	Regular point process

	Simulating manager search strategies
	Random strategy (a): stop after single empty cell of area A
	Random strategy (b): stop after S empty cells
	Adaptive cluster sampling strategy

	Mathematical models
	Random strategy (a): stop after single empty cell of area A
	Random strategy (b): stop after S empty cells

	Correspondence with functional responses types
	Application
	Pest spatial distribution
	Management strategy
	Simulations
	Management goal feasibility


	Results
	Varying the management costs
	Varying the management strategy and the pest spatial distribution
	Varying the search area
	Theoretical results summary
	Correspondence with predator functional response
	Application

	Discussion
	Acknowledgments
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D

	References




